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Agenda

Regulation and drivers for future technology  

H2 and other future e-fuels 

Hydrogen HD combustion engine development                           

• Model based concept development

• Single cylinder testing and example results

• Hydrogen combustion and emission modeling                           

• Full engine test bench for proof of concept 

Summary and Outlook
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 Most important vehicle classes for EU CO2 reduction are 4, 5, 9, 10

 Significant CO2 reduction for long-haul applications required

 All alternative fuels and BEV scenarios require a push through legislation and major investments

Enabler for Alternative Powertrain Structures
Commercial Vehicles On-Road

IAV  07/2021  TP-C   Status: Released3

CO2 is our main challenge … and our main technology driver!

EU CO2 

regulation 

HD trucks

-15% / 4,500 EUR*EU: Fleet reduction targets:

(reference MY2019) 

-30% / 6,800 EUR*

minimum share of clean vehicles in public procurement and service contracts

2% min. fleet share of LEV/ZEV (trucks only, Buses & coaches excluded)

Emission 

legislation 

HD trucks

Euro VI E Euro VII (assumed)

EPA/CARB Ultra Low NOx (Phase In 2024-2031) 

EU 2050 goal:

60% cut in transport 

emissions 

EU:

USA:

EU „Vision Zero“

Climate neutral 

Europe by 2050

2020 2030 2040 2050 Year



0%

5%

10%

15%

20%

25%

30%

35%65

70

75

80

85

90

95

100

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Long-haul Truck with Diesel engine, Tank-to-Wheel

Diesel-BTE Improvement WHR Transmission & Axle

Tyres Aerodynamics Lightweight Design
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 Successive increase of technology efficiency 

and penetration rate from year to year

 30 % CO2 reduction cannot be achieved 

with a „Diesel-only“ strategy

Gap 2030
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• Full engine test bench for proof of concept 
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Selection of E-fuel
Considering Regulation and OEM Boundary Conditions 

Which e-fuel is the most appropriate?

• There are many e-fuels under development

• Main motivation is the CO2 regulation. For 

which regulation (well-to-wheel, tank to 

wheel, etc.) which e-fuel strategy is better?

– Develop. of future emission scenarios

• There are multiple OEMs working on 

different e-fuel in EU, USA, etc.

– Having a market overview is beneficial

• Selection of the most promising e-fuel should 

be selected based on OEM needs and 

requirements, market, regulations, etc.

– Individual definition of e-fuel required

 IAV can support on all above points

 The first step is technology and 

regulation survey “tailored” for 

customer

OEM global 

approach

OEM 

engine 

portfolio

Future NOx

regulation

Selection of 

E-fuel

Local fuel 

prod. cost 

System 

complexity

CO2 benefit
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Power Density of Hydrogen Depending on Mixture Formation

Boundaries:

l = 1.8 

la = const. 

e = const. 

T = const. 

Mixture formation

Power potential [%]

Efficiency potential [%]

(compared to Diesel, theoretical)

Risks
Back fire

Pre ignition
Knocking

 For CV applications, depending on boundary conditions (e. g. retrofit from Diesel baseline) PFI or LP-DI are 

good options. HP-DI is on the research level due to the current technical feasibility.

H2

Air

H2

Air

H2

Air

PFI

–

–

DI early LP-DI

+

++

DI during comb. HP-DI

++

+++
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References and development process

Concept design 

and test

Requirements analysis

Integration 

testing

Concept implementation

System testing

H2 fork lift / GANE fuel test

IAV Model-based Development Methodology
Alternative Powertrain Development (H2 Combustion and Fuel Cell)

 Long-term experiences with the state-of-the-art technologies PFI to HP-DI H2 combustion to fuel cell development 

 Complete H2 development tool chain: sophisticated testing environments, component and system models etc.

Overall system simulation 

IAV testing environments 

SW development
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IAV Uniqueness and Highlights: Hydrogen Combustion Engine
Hydrogen Combustion and After-Treatment Development

Highlights / USPs: Combustion + EAT

• Single-cylinder testing of innovative hydrogen combustion:

• PFI / SI, water injection, LP-DI and HP-DI / CI up to 300 bar

• Full H2 engine testing and calibration (13 l class)

• Well validated IAV 1D and 3D CFD own models for H2 combustion, NOx and 

knocking using detailed reaction kinetics

• Synthetic catalyst testing (in PCL) and modelling of H2-SCR tech.

• Holistic engine + EAT system optimization to define EAT structure (H2-SCR + 

NH3-SCR) in cold cycles for UL-NOx

• Initiating and conducting of about 2.3 Mio. EUR  research projects on 

Hydrogen combustion and after-treatment dev.

• Multiple dedicated H2 single cylinder engines available in different size 

categories HD (2.X l), MD (1.X l), LD (0.5 l)

 Overall system development of engine to EAT: From pure research to 

series preparation!

 The new IAV HD 2 l single-cylinder with possibility to measure from 

HPDI to PFI concepts.

6 x injectors with 

8 bar injectors 

on a ring (up to 

12 possible)

Deflagration system

(to protect from H2

back-fire)

Low-pressure 

indication (Intake 

and exhaust sides)

H2 single-cylinder (2 l) used by IAV

IAV  07/2021  TP-C   Status: Released10



H2 Single Cylinder Testing
Summary of H2 investigations

Assembly and setup of hydrogen PFI engine

Combustion and emission investigations

• Particle number and NOx emissions

• Variation of rel. air-fuel ratio (lean burning)

• Variation of EGR ratio and comp. to lean burning

• Knock and pre-ignition tests for model dev.

• Variation of compression ratio

Ignition system variation

• Pre-chamber spark plug

• Conventional spark plug

Water injection 

• Improvement of pre-ignition and fuel efficiency

• NOx reduction, esp. under transient conditions

 Definition and test of further concepts in collaboration possible. 

 All options from HPDI (300 bar) possible with the new SCE
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HD Hydrogen Combustion Development
Overview – Measurement Data

H2 experimental investigations

Intensive measurement at HD single-cylinder 

engine

Variation of following parameters (exemplary):

• Engine speed: 1100 and 1250 rpm

• IMEP: 5 .. 22 bar

• Torque for 3 l 525 Nm

Torque for 12 l 2100 Nm

(at 1250 rpm)

• Boost pressure: up to 3.3 bar

• Rel. A/F ratio: 1.8 .. 3.4

• EGR rate: 0 .. 15 %

Impact of operation parameters on emission 

behaviour e.g. NOx emissions

 Indicated mean effective pressure of 

22.4 bar reached with PFI concept!
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IAV Activities and Expertise on HD Hydrogen Combustion Development
Summary
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Simulation results with the IAV combustion model

Measurement data – single-cylinder research engine

• Measurement data based on 2 l hydrogen single cylinder engine 

• Totally over 130 operating points available with indication data

• Engine speed from 1100 rpm and 1250 rpm

• Indicated mean effective pressure from 5 – 22 bar 

Simulation data – predictive combustion and emission modelling

• IAV developed new combustion model based on reaction kinetics modelling 

of laminar burning velocity.

• The normalized burn rate as well as the In-cylinder pressure results 

simulated by the calibrated SI turbo model show very good match to the 

measurement results.

 IAV combustion model can well predict the hydrogen combustion
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IAV Activities and Expertise on HD Hydrogen Combustion Development
Validation of H2 Combustion Model

 IAV combustion model can well predict the hydrogen combustion
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IAV Activities and Expertise on HD Hydrogen Combustion Development
Model validation results
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 IAV’s custom combustion model can accurately predict all relevant hydrogen combustion characteristics as well as 

auto-ignition in the unburnt mass
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HD Hydrogen Combustion Development
Overview – Measurement Data

• NOx emissions and particle number as a function of the relative air-fuel ratio, n= 1100, IMEP= 8 bar

• High gradient in NOx emission below Lambda 2 and no significant NOx reduction benefit with high relative air-fuel ratios

• Reduced particle numbers with higher air-fuel ratios and consequently higher intake, exhaust and in-cylinder pressure.

• Increase of hydrogen slip with lean burning

 A connection between NOx and particle emissions and relative air-fuel ratio observed.
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H2 Engine, Cold-start FTP Results, Transient Simulation

Can future ultra Low NOx legislations be 

achieved using heavy duty H2 engine?

• Low NOx emissions during ‘steady’ periods

• Evaluation of transient NOx emissions on 

cold-start HD-FTP cycle

• Extension of simulation model of 12 l HD 

engine for transient investigations

• In steady-state with mean value of 400 – 500 

ppm NOx, in transient cold start NOx peaks 

(5000 – 8000 ppm, based on control 

strategy) can be seen during the dynamic 

torque build-up periods  Challenge for air-

path control and limitations of air path, 

turbocharger response

• Control strategies and function development 

should be considered

 The model-based development approach could be performed from concept to function development

NOx limit reached in the early 

phase, due to the NOx peaks 

 Air-path control is crucial!

H2 engine transient 

simulation results
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H2 Engine, Cold-start FTP Results, Transient Simulation
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Model-based control and calibration

• IAV has a long-terms experiences on using 

model-based control development and 

calibration

• The air-path control is directly implemented 

in GT-Suite model environment

• The predictive engine and EAT models in 

GT-Suite can be directly used as the virtual 

test bench to develop and calibrate the 

control strategies

• Low NOx emissions during ‘steady’ periods

 From concept to function 

development!

 Also model-based calibration!

Improved NOx

behavior with 

improved control 

and calibration 

H2 engine transient 

simulation results

Still above the 

limit! Requires 

improved 

engine/EAT 

calibration and 

thermal 

management
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H2 Engine, Cold-start FTP Results, Transient Simulation

Evaluation of H2 engine for future Ultra Low NOx

Cu-Zeolite SCR (with non coated particulate filter)

Cu-Zeolite SCR (with non coated particulate 

filter)

Investigated EAT layouts for H2 engine

Transient emission results on cold 

FTP cycle

• Evaluation using holistic simulation and 

multiple engine calibrations

• Compared to baseline EU VId diesel EAT, 

the SCR was moved to an upstream position

• The necessity of an oxidation catalyst and 

the most suitable coating for SCR were 

considered.

• Other EAT variants are investigated and 

compared based on tailpipe emissions
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a (H2/NOx) = 4, Variation of NOx and H2

H2-ICE After Treatment Technology
H2-DeNOX Investigation in IAV’s Physical-chemical Laboratory

Evaluation of alternative technologies – H2 DeNOx

• H2-DeNOx technology catalyst tested on synthetic gas test 

bench to show DeNOx behavior under different temp. and 

concentration levels

• Catalyzed NOx reduction under stoichiometric or rich 

conditions by hydrogen using TWC and LNT 

• Under purely lean conditions, high NOx conversions can be 

achieved even in low-temperature range 

Results

• Promising NOx reduction efficiency of >80% reached at low 

temperatures, but in small temperature window

• N2O formation observed due to reaction of H2 and NOx on 

PGM  Development needed!

• Catalyst technology is not optimized, so that further reduction 

of the N2O slip can be assumed

• Using holistic engine and after treatment evaluation, the 

optimum after-treatment architecture can be defined

• Final concept based on specific working cycles
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IAV’s Medium and Heavy-duty ICE Cells

HD Test Benches

B14: 660 kW / 3,500 Nm

B15: 780 kW / 5,000 Nm

C02: 650 kW / 3,500 Nm

G07: 550 kW / 2,500 Nm

G14: 660 kW / 3,500 Nm

U01: 660 kW / 3,500 Nm

Operations: 

C: Chemnitz, G: Gifhorn, B: Berlin, 

U: Detroit, J: Tokyo, Br: Sao Paulo

CNG – Natural Gas capable, 

H2 – Hydrogen capable

20 asynchronous dynos for CV out of 50 in total @ IAV

MD Test Benches

B07: 330 kW / 1,400 Nm

B08: 220 kW / 934 Nm

B09: 460 kW / 981 Nm

C01: 330 kW /  700 Nm

G09: 500 kW / 1,000 Nm

G10: 235 kW / 1,000 Nm

G15: 550 kW / 1,100 Nm

G16: 500 kW / 1,000 Nm

U02: 330 kW / 1,400 Nm

U03: 330 kW / 1,400 Nm

U04: 330 kW / 1,400 Nm

J01: 265 kW / 506 Nm

(business partner)

Br03:330 kW / 1,400 Nm

(business partner)

Heavy HD Test Bench 

G13: 1,470 kW / 7,000 Nm

H2

CNG

CNG

CNG

CNG

CNG

CNG

CNG

CNG H2

H2 feed  H2 pressure 

regulation cabinet  

20 – 60 bar at engine 
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IAV is enhancing it‘s engine test benches for hydrogen 

use

• Suitable from LD to HD Commercial Vehicle engines

• Testing from component up to full engine calibration and 

series preparation

• IAV is investing in alternative fuels infrastructure 



Hydrogen Engine Test Resources at IAV
Specifications HD Hydrogen testing
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IAV is enhancing it‘s engine test benches 

for hydrogen use

• Suitable from Light to Heavy Duty 

Commercial Vehicle engines

• 2 test cells with parallel operation 660 kW / 

3,500 Nm

• H2 supply possible via tank and trailer 

• H2 pressure levels up to 60 bar (upgrade to 

100 bar possible)

• Testing from component up to full engine 

calibration and series preparation

 Supporting from early concept phase 

to series preparation!



Agenda
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H2 and other future e-fuels 

Hydrogen HD combustion engine development                           

• Model based concept development

• Single cylinder testing and example results

• Hydrogen combustion and emission modeling                           

• Full engine test bench for proof of concept 

Summary and Outlook

IAV  07/2021  TP-C   Status: Released24



Potentials and Challenges of Hydrogen Combustion
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Summary and outlook

• 30 % CO2 reduction cannot be achieved with a „Diesel-only“ strategy

• There is a need for zero CO2 alternative propulsions

• Hydrogen mobility (FC and ICE), e-fuels, electrifications

• First investigations performed with the HD single-cylinder engine

• Promising results for NOx reduction using lean burning

• Development of an IAV H2 combustion model

• Still challenges with combustion anomalies, like pre-ignition 

• Hydrogen direct injection can improve the combustion behavior

• Promising first results on H2-DeNOX catalyst

 Promising results and continuous improvement of H2 engine & EAT



Hydrogen Combustion Publication List
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