HD Hydrogen Combustion from Concept to Series Development

Dr. R. REZAEI, T. Schmidt, Kick Off, CV Südwest 9th July 2021
Agenda

Regulation and drivers for future technology

H₂ and other future e-fuels

Hydrogen HD combustion engine development

• Model based concept development
• Single cylinder testing and example results
• Hydrogen combustion and emission modeling
• Full engine test bench for proof of concept

Summary and Outlook
Most important vehicle classes for EU CO₂ reduction are 4, 5, 9, 10
Significant CO₂ reduction for long-haul applications required
All alternative fuels and BEV scenarios require a push through legislation and major investments

EU CO₂ regulation HD trucks

EU: Fleet reduction targets: (reference MY2019)
-15% / 4,500 EUR*
-30% / 6,800 EUR*
2% min. fleet share of LEV/ZEV (trucks only, Buses & coaches excluded)
minimum share of clean vehicles in public procurement and service contracts

Emission legislation HD trucks

EU:
- Euro VI E
- Euro VII (assumed)

USA:
- EPA/CARB Ultra Low NOx (Phase In 2024-2031)

EU „Vision Zero“
Climate neutral Europe by 2050

- 2020
- 2030
- 2040
- 2050

Year

EU 2050 goal:
60% cut in transport emissions

CO₂ is our main challenge … and our main technology driver!

EU: Fleet reduction targets: (reference MY2019)
-15% / 4,500 EUR*
-30% / 6,800 EUR*
2% min. fleet share of LEV/ZEV (trucks only, Buses & coaches excluded)
minimum share of clean vehicles in public procurement and service contracts

Emission legislation HD trucks

EU:
- Euro VI E
- Euro VII (assumed)

USA:
- EPA/CARB Ultra Low NOx (Phase In 2024-2031)

EU „Vision Zero“
Climate neutral Europe by 2050

- 2020
- 2030
- 2040
- 2050

Year

EU 2050 goal:
60% cut in transport emissions

CO₂ is our main challenge … and our main technology driver!
Long-haul Truck with Diesel engine, Tank-to-Wheel

Successive increase of technology efficiency and penetration rate from year to year

30 % CO₂ reduction cannot be achieved with a „Diesel-only“ strategy
Agenda

Regulation and drivers for future technology

H₂ and other future e-fuels

Hydrogen HD combustion engine development

- Model based concept development
- Single cylinder testing and example results
- Hydrogen combustion and emission modeling
- Full engine test bench for proof of concept

Summary and Outlook
Selection of E-fuel
Considering Regulation and OEM Boundary Conditions

Which e-fuel is the most appropriate?

- There are many e-fuels under development
- Main motivation is the CO\textsubscript{2} regulation. For which regulation (well-to-wheel, tank to wheel, etc.) which e-fuel strategy is better?
 - Develop. of future emission scenarios
- There are multiple OEMs working on different e-fuel in EU, USA, etc.
 - Having a market overview is beneficial
- Selection of the most promising e-fuel should be selected based on OEM needs and requirements, market, regulations, etc.
 - Individual definition of e-fuel required

→ IAV can support on all above points
→ The first step is technology and regulation survey “tailored” for customer
Power Density of Hydrogen Depending on Mixture Formation

Boundaries:
- $I = 1.8$
- $I_a = \text{const.}$
- $\eta_e = \text{const.}$
- $T = \text{const.}$

<table>
<thead>
<tr>
<th>Mixture formation</th>
<th>PFI</th>
<th>DI early LP-DI</th>
<th>DI during comb. HP-DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power potential [%]</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Efficiency potential [%]</td>
<td>-</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>

(compared to Diesel, theoretical)

Risks
- Back fire
- Pre ignition
- Knocking

For CV applications, depending on boundary conditions (e.g. retrofit from Diesel baseline) PFI or LP-DI are good options. HP-DI is on the research level due to the current technical feasibility.
Agenda

Regulation and drivers for future technology

\(\text{H}_2 \) and other future e-fuels

Hydrogen HD combustion engine development

- Model based concept development
- Single cylinder testing and example results
- Hydrogen combustion and emission modeling
- Full engine test bench for proof of concept

Summary and Outlook
IAV Model-based Development Methodology
Alternative Powertrain Development (H₂ Combustion and Fuel Cell)

- Long-term experiences with the state-of-the-art technologies PFI to HP-DI H₂ combustion to fuel cell development
- Complete H₂ development tool chain: sophisticated testing environments, component and system models etc.
IAV Uniqueness and Highlights: Hydrogen Combustion Engine
Hydrogen Combustion and After-Treatment Development

H₂ single-cylinder (2 l) used by IAV
- Deflagration system (to protect from H₂ back-fire)
- Low-pressure indication (intake and exhaust sides)
- 6 x injectors with 8 bar injectors on a ring (up to 12 possible)

Highlights / USPs: Combustion + EAT
- Single-cylinder testing of innovative hydrogen combustion:
 - PFI / SI, water injection, LP-DI and HP-DI / CI up to 300 bar
 - Full H₂ engine testing and calibration (13 l class)
- Well validated IAV 1D and 3D CFD own models for H₂ combustion, NOₓ and knocking using detailed reaction kinetics
- Synthetic catalyst testing (in PCL) and modelling of H2-SCR tech.
- Holistic engine + EAT system optimization to define EAT structure (H2-SCR + NH₃-SCR) in cold cycles for UL-NOₓ
- Initiating and conducting of about 2.3 Mio. EUR research projects on Hydrogen combustion and after-treatment dev.
- Multiple dedicated H₂ single cylinder engines available in different size categories HD (2.X l), MD (1.X l), LD (0.5 l)

→ Overall system development of engine to EAT: From pure research to series preparation!
→ The new IAV HD 2 l single-cylinder with possibility to measure from HPDI to PFI concepts.
H₂ Single Cylinder Testing
Summary of H₂ investigations

Assembly and setup of hydrogen PFI engine

Combustion and emission investigations
- Particle number and NO₅ emissions
- Variation of rel. air-fuel ratio (lean burning)
- Variation of EGR ratio and comp. to lean burning
- Knock and pre-ignition tests for model dev.
- Variation of compression ratio

Ignition system variation
- Pre-chamber spark plug
- Conventional spark plug

Water injection
- Improvement of pre-ignition and fuel efficiency
- NO₅ reduction, esp. under transient conditions

→ Definition and test of further concepts in collaboration possible.
→ All options from HPDI (300 bar) possible with the new SCE
HD Hydrogen Combustion Development
Overview – Measurement Data

H₂ experimental investigations

Intensive measurement at HD single-cylinder engine

Variation of following parameters (exemplary):

- Engine speed: 1100 and 1250 rpm
- IMEP: 5 .. 22 bar
- Torque for 3 l: 525 Nm
- Torque for 12 l: 2100 Nm (at 1250 rpm)
- Boost pressure: up to 3.3 bar
- Rel. A/F ratio: 1.8 .. 3.4
- EGR rate: 0 .. 15%

Impact of operation parameters on emission behaviour e.g. NOₓ emissions

ème indicated mean effective pressure of 22.4 bar reached with PFI concept!

Emissions and exhaust gas temperature as a function of the relative air-fuel ratio, n= 1100 & 1250 1/min, IMEP=11 bar
IAV Activities and Expertise on HD Hydrogen Combustion Development

Summary

Simulation results with the IAV combustion model

Measurement data – single-cylinder research engine
- Measurement data based on 2 l hydrogen single cylinder engine
- Totally over 130 operating points available with indication data
- Engine speed from 1100 rpm and 1250 rpm
- Indicated mean effective pressure from 5 – 22 bar

Simulation data – predictive combustion and emission modelling
- IAV developed new combustion model based on reaction kinetics modelling of laminar burning velocity.
- The normalized burn rate as well as the In-cylinder pressure results simulated by the calibrated SI turbo model show very good match to the measurement results.

→ IAV combustion model can well predict the hydrogen combustion
IAV combustion model can well predict the hydrogen combustion
IAV Activities and Expertise on HD Hydrogen Combustion Development
Model validation results

Prediction of Combustion Characteristics

Prediction of Auto-Ignition

→ IAV’s custom combustion model can accurately predict all relevant hydrogen combustion characteristics as well as auto-ignition in the unburnt mass
HD Hydrogen Combustion Development Overview – Measurement Data

- NO\textsubscript{x} emissions and particle number as a function of the relative air-fuel ratio, n= 1100, IMEP= 8 bar
- High gradient in NO\textsubscript{x} emission below Lambda 2 and no significant NO\textsubscript{x} reduction benefit with high relative air-fuel ratios
- Reduced particle numbers with higher air-fuel ratios and consequently higher intake, exhaust and in-cylinder pressure.
- Increase of hydrogen slip with lean burning

→ A connection between NO\textsubscript{x} and particle emissions and relative air-fuel ratio observed.
H₂ Engine, Cold-start FTP Results, Transient Simulation

H₂ engine transient simulation results

Can future ultra Low NOₓ legislations be achieved using heavy duty H₂ engine?

- Low NOₓ emissions during ‘steady’ periods
- Evaluation of transient NOₓ emissions on cold-start HD-FTP cycle
- Extension of simulation model of 12 l HD engine for transient investigations
- In steady-state with mean value of 400 – 500 ppm NOₓ, in transient cold start NOₓ peaks (5000 – 8000 ppm, based on control strategy) can be seen during the dynamic torque build-up periods ➔ Challenge for air-path control and limitations of air path, turbocharger response
- Control strategies and function development should be considered

→ The model-based development approach could be performed from concept to function development
Model-based control and calibration

- IAV has a long-terms experiences on using model-based control development and calibration
- The air-path control is directly implemented in GT-Suite model environment
- The predictive engine and EAT models in GT-Suite can be directly used as the virtual test bench to develop and calibrate the control strategies
- Low \(\text{NO}_x \) emissions during ‘steady’ periods

→ From concept to function development!
→ Also model-based calibration!
H₂ Engine, Cold-start FTP Results, Transient Simulation

Evaluation of H₂ engine for future Ultra Low NOₓ

- Transient emission results on cold FTP cycle
 - Evaluation using holistic simulation and multiple engine calibrations
 - Compared to baseline EU VIId diesel EAT, the SCR was moved to an upstream position
 - The necessity of an oxidation catalyst and the most suitable coating for SCR were considered.
 - Other EAT variants are investigated and compared based on tailpipe emissions

Influence of engine calibration

Investigated EAT layouts for H₂ engine

Cu-Zeolite SCR (with non coated particulate filter)

Cu-Zeolite SCR (with non coated particulate filter)

Transient emission results on cold FTP cycle

- Evaluation using holistic simulation and multiple engine calibrations
- Compared to baseline EU VIId diesel EAT, the SCR was moved to an upstream position
- The necessity of an oxidation catalyst and the most suitable coating for SCR were considered.
- Other EAT variants are investigated and compared based on tailpipe emissions
H₂-ICE After Treatment Technology
H₂-DeNOₓ Investigation in IAV’s Physical-chemical Laboratory

Evaluation of alternative technologies – H₂ DeNOₓ

• H₂-DeNOₓ technology catalyst tested on synthetic gas test bench to show DeNOₓ behavior under different temp. and concentration levels

• Catalyzed NOₓ reduction under stoichiometric or rich conditions by hydrogen using TWC and LNT

• Under purely lean conditions, high NOₓ conversions can be achieved even in low-temperature range

Results

• Promising NOₓ reduction efficiency of >80% reached at low temperatures, but in small temperature window

• N₂O formation observed due to reaction of H₂ and NOx on PGM → Development needed!

• Catalyst technology is not optimized, so that further reduction of the N₂O slip can be assumed

• Using holistic engine and after treatment evaluation, the optimum after-treatment architecture can be defined

• Final concept based on specific working cycles
IAV’s Medium and Heavy-duty ICE Cells

IAV is enhancing its engine test benches for hydrogen use
- Suitable from LD to HD Commercial Vehicle engines
- Testing from component up to full engine calibration and series preparation
- IAV is investing in alternative fuels infrastructure

20 asynchronous dynos for CV out of 50 in total @ IAV

MD Test Benches
- B07: 330 kW / 1,400 Nm
- B08: 220 kW / 934 Nm
- B09: 460 kW / 981 Nm
- C01: 330 kW / 700 Nm
- G09: 500 kW / 1,000 Nm
- G10: 235 kW / 1,000 Nm
- G15: 550 kW / 1,100 Nm
- G16: 500 kW / 1,000 Nm
- U02: 330 kW / 1,400 Nm
- U03: 330 kW / 1,400 Nm
- U04: 330 kW / 1,400 Nm
- J01: 265 kW / 506 Nm (business partner)
- Br03: 330 kW / 1,400 Nm (business partner)

HD Test Benches
- B14: 660 kW / 3,500 Nm
- B15: 780 kW / 5,000 Nm
- C02: 650 kW / 3,500 Nm
- G07: 550 kW / 2,500 Nm
- G14: 660 kW / 3,500 Nm
- U01: 660 kW / 3,500 Nm

Heavy HD Test Bench
- G13: 1,470 kW / 7,000 Nm

Operations:
- C: Chemnitz, G: Gifhorn, B: Berlin, U: Detroit, J: Tokyo, Br: Sao Paulo

CNG – Natural Gas capable, H2 – Hydrogen capable
IAV is enhancing its engine test benches for hydrogen use

- Suitable from Light to Heavy Duty Commercial Vehicle engines
- 2 test cells with parallel operation 660 kW / 3,500 Nm
- \(\text{H}_2 \) supply possible via tank and trailer
- \(\text{H}_2 \) pressure levels up to 60 bar (upgrade to 100 bar possible)
- Testing from component up to full engine calibration and series preparation

→ Supporting from early concept phase to series preparation!
Agenda

Regulation and drivers for future technology

H₂ and other future e-fuels

Hydrogen HD combustion engine development

- Model based concept development
- Single cylinder testing and example results
- Hydrogen combustion and emission modeling
- Full engine test bench for proof of concept

Summary and Outlook
Summary and outlook

- 30 % CO₂ reduction cannot be achieved with a „Diesel-only“ strategy
- There is a need for zero CO₂ alternative propulsions
- Hydrogen mobility (FC and ICE), e-fuels, electrifications
- First investigations performed with the HD single-cylinder engine
- Promising results for NOₓ reduction using lean burning
- Development of an IAV H₂ combustion model
- Still challenges with combustion anomalies, like pre-ignition
- Hydrogen direct injection can improve the combustion behavior
- Promising first results on H₂-DeNOₓ catalyst

→ Promising results and continuous improvement of H₂ engine & EAT
Hydrogen Combustion Publication List

Contact

Priv.-Doz. Dr.-Ing. habil. Reza REZAEI
Manager
Advanced Engineering & Model-Based Development
Commercial Vehicle Powertrain
IAV GmbH
Nordhoffstr. 5, 38518 GIFHORN (GERMANY)
Phone +49 5371 80 – 52271
reza.rezaei@iav.de
www.iav.com

Timo SCHMIDT
Project Manager
Performance Engineering
Commercial Vehicle Powertrain
IAV GmbH
Nordhoffstr. 5, 38518 GIFHORN (GERMANY)
Phone +49 5371 80 – 51347
timo.schmidt@iav.de
www.iav.com