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Introduction and Motivation
Why H, ICE?
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Sustainability — view*:
LCV: Fuelcell and H2-ICE are very close, while the BEV shows clearly the
highest life cycle GHG emissions

HD: Usage phase with high mileage dominates the life cycle. This leads to
an advantage of the BEV's charged with 100 % renewable energy. So the
battery CO2-backpack of the BEV pays off at the end of life.
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TCO —view™:

LCV: ICE powertrains dominate the TCO ranking. H2-ICE will be
competitive to Diesel beyond 2030.

HD: Usage phase with high mileage dominates the life cycle. This leads to
an advantage of the BEV's charged with 100 % renewable energy. So the
battery CO2-backpack of the BEV pays off at the end of life.
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Introduction and Motivation
Why H, ICE?

H2 ICEs are important ecological and economical
alternatives to other Zero-CO2 propulsion
concepts.

On long term H2 FCEV may be in advantage over
H2 ICE, however H2 ICE is important as short and
midterm solution in LCV and HDV applications.

Among all competing technologies, the (H2) ICE
comes with the highest TRL and is based on a
mature concept.
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Introduction and Motivation
Challenges and Chances of H2 as ICE fuel
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» Specifically LPDI mixture preparation is challenging
due to spray contraction and short time interval,
eventually leading to inhomogeneities.

IAV 05/2022 TD-F Mrf3 Status: public

Mixture Preparation

Combustion speed
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Introduction and Motivation
Challenges and Chances of H2 as ICE fuel

Mixture Preparation
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Sufficient mixture preparation is the most crucial issue with H2-ICE

Beneficial diffusion behaviour of H2 compared to other fuels playing only a
minor role due to the relevant time scales.

Deviations from good homogeneity comes with issues in combustion- and
emissions performance.

H2 features fast combustion even in diluted / lean conditions

While this fast combustion is beneficial for efficiency and combustion stability, it
also creates a high temperature in the flame area

Minimum global lambda in the map shall be around ~2 with only small local
deviations (o, < 0.1) in order to avoid severe NOx creation

Faster H2 combustion leads to increased p,, and T,,, compared to gasoline
Ultimately, high p and T lead to drastically reduced ignition delay = auto-ignition
Dilution (air / EGR) mitigates this issue and enable operation at higher spec power

Poor homogeneity and rich spots need to be avoided (PI, Knock, Backfire)
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H2-ICE Development

Application Example of a PFI hydrogen engine
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» PFI System with benefits concerning mixture preparation but drawbacks in performance compared to LPDI due to lower

volumetric efficiency
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H2-ICE Development

Injection System Comparison PFl vs. LPDI
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H2-ICE Development
LPDI Spray Formation

Comparison of air entrainment into the spray cloud: outward opening nozzle vs. multi hole nozzles

Average lambda along spray axis « At 40 mm (resp. 20 mm) distance the
5.0 —Dase injector average lambda values are same for base
injector and 2-hole (4-hole) cap sprays!
4,5 a2 -hole cap (A =4 mm2)
4,0 - ===4-hole cap (A = 4 mm2) « Beyond that distances multi hole nozzles
provide improved mixing quality in terms of
3.5 1 air entrainment (lambda value) at spray front!
EB’O LA « Thus, multi hole caps provide
o] 2,5 T ] ! -
G20 A ‘ — an improved spatial gas distribution

within the combustion chamber,

> — best performance in terms of nozzle
positioning at the cylinder head,
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— best choice for big engines (> 60
mm free penetration length at EOI).

» A-Nozzle provides only poor penetration / air entrainment - Multihole caps needed for spray forming

10 IAV 05/2022 TD-F MrB  Status: public I/\\/



H2-ICE Development

LPDI Mixture Preparation / Injector cap variation
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swirl = 0, 5-hole cap
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swirl =0, no cap +1.6 mm
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swirl =0, 11-hole cap
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H2-ICE Development

LPDI Mixture Preparation / Injector cap variation

1600rpm / FL
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The standard deviation of lambda is a
homogeneity indicator. The lower
the value the better the mixture.
Desired values here are below 0.1.

Injector position +1.6 mm into the
cylinder leads to a worse
homogeneity.

The 4-hole cap is showing the lowest
standard deviation, i.e. the most
homogenic mixture.

The effect of the swirl is shown with
the 5-hole cap, where increasing the
swirl results in a significant
homogeneity increase.

» Careful development of injector position and cap design needed to deliver good homogenization. Still, proper charge motion is

greatest lever to improve homogeneity
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H2-ICE Development

EAT layout investigations

Evaluation of different EAT layouts for HD engine

* Holistic investigation of 3 different EAT layouts via coupled simulation
(Engine & EAT models)

»  Optimization of transient engine control to allow fast engine load build-

up with low NOx EO emissions: Fulfills proposed EUVII legislation
» throttle valve -

* boost pressure control (waste gate / VTG)

*  mixture enrichment

*  spark shift

e EGR control

*  Optimization of DEF dosing strategy to enable high NOx conversion
with low NH; slip

- The considered emissions of all EAT configurations are below the proposed EUVII limits (100 and 90 Percentile).

- Low engine out NOx emissions enable overall low tailpipe NOx emission

- NOx and N,O emission can be lowered significantly with the SCR-only layout due to lowered NO, generation
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H2-ICE Development

NOx conformity of H2 ICE propulsion system

NO, conformity for future ultra-low NO, Hyd.

Low Load Cycle by CARB ‘

Dev eloped HD H2 engine

S engines
Gz te00- i ol «  Significant reduction in NO, limits for future
5% 1300 il nH‘ A (O WO U8 |1 standards
. T e e eyl (CARB MY27, EPA planned standard, EURO VII)
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EEQ 400 * Engine-out NO, emissions < 2.0 g/kWh
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0.00 P ———— i

RN UL - The future ultra-low NOx regulation can be reached with
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
time [s] advanced system development

14 IAV 05/2022 TD-F Mrf3 Status: public



i

‘.||.
i

i

i

M
I

Agenda

Introduction

H2-ICE Development
* PFlvs. LPDI
e LPDI mixture preparation
» Exhaust Aftertreatment

Summary and Outlook



H2-ICE Development

IAV’s unique H2-ICE development methodology

Component Level

~

1AV H, Knock Prediction

v

1AV H, Laminar Flame |
Speed Model

N
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Adapted Emission
Models (NO,, H,,...)

_

Validation / Calibration

Subsystem Level

MASSFRAC_H2

Validation

uolelqifed
juoiyepifen

©
)
C
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&
—
(b)
o
x
LL

Parametrization
(burn rate, in/ex pressure)

Rapid Prototyping by means of 3D print,
e.g. pistons and cylinder heads
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System Level °

InCylinder Pressureinkx * ol

3aBHEEE W |

In all development
levels, IAV aims at
employing own
phenomenological
models that enable
predictive simulation of
system behavior, e.g.

Ignition

Knock

Flame speed / burn

rate

Engine—out emissions

Tailpipe emissions

Validation of
assumptions and
simulation results on all
levels (specific
component testing or
In-situ experiments) is
part of IAV's
development process
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Conclusion and Outlook
Technology Perspective of H2-ICE's
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LP DI H, or PFI ICE Concept

* Premixed S| w/ Swirl Charge Motion

* pH, = 30 bar (DI) / <12 bar (PFI)

*CR=12

» 2-Stage Boosting w/ VNT for
performance variant

e Map Wide A > 2 Operation

e Optimized Mixture Preparation

40-

Max. Brake Thermal Efficiency in %

367

36

ESI -DI

Evolved LP DI H, ICE Concept
e Increased CR > 14
 Improved TC Efficiencies
» Red. Pressure Losses

* CAC Optimization

* PCC

e Increased Full Load &

« EGR >

* Miller
* H,O Injection

* Friction Reduction >

At Generation H, ICE
« Diffusive HP DI w/ ESI

> 55%

* pH, =200 bar
* CR16-17
» Reduced Wall
Heat Losses
— Chamber Insulation
— PCC + Waste Heat
Recovery
— (Opposed Piston)

1st SOPs for LP DI H2
ICE expected in 2025

Future development focus
on diffusive combustion

Potential for BTE >50% in
due to fuel properties
! I

34 T T
2020 2025
Start of Production / Year
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Summary and outlook

* 30 % CO, reduction cannot be achieved with a ,Diesel-only” strategy

» There is a need for zero CO, alternative propulsions, which are
available shortterm

» Hydrogen mobility (FC and ICE), e-fuels, electrifications

» HD Hydrogen system development from concept to series can be O =1
supported by 1AV

» Retrofit, especially for large-bore engine

- Promising results in development of new commercial engines
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Thank yo your attention!

Marc Sens
Senior Vice President Research & Technology | Sustainability Engineering
Mobile: 0162 244 61 84

ens@iav.de

e
‘-“ﬁ;“-‘;‘:‘“\____

E- - — -_-‘_‘-‘-“.‘-“‘-“_

0 all colleagues who have contri



	Foliennummer 1
	Agenda
	Introduction and Motivation�Why H2 ICE?�
	Introduction and Motivation�Why H2 ICE?�
	Introduction and Motivation�Challenges and Chances of H2 as ICE fuel
	Introduction and Motivation�Challenges and Chances of H2 as ICE fuel
	Agenda
	H2-ICE Development�Application Example of a PFI hydrogen engine
	H2-ICE Development�Injection System Comparison PFI vs. LPDI
	H2-ICE Development�LPDI Spray Formation
	H2-ICE Development�LPDI Mixture Preparation / Injector cap variation
	H2-ICE Development�LPDI Mixture Preparation / Injector cap variation
	Foliennummer 13
	Foliennummer 14
	Agenda
	Foliennummer 16
	Conclusion and Outlook�Technology Perspective of H2-ICE´s
	Summary and outlook
	Foliennummer 19

