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Sustainability – view*:
LCV: Fuelcell and H2-ICE are very close, while the BEV shows clearly the 
highest life cycle GHG emissions

HD: Usage phase with high mileage dominates the life cycle. This leads to 
an advantage of the BEV´s charged with 100 % renewable energy. So the 
battery CO2-backpack of the BEV pays off at the end of life. 

TCO – view*:
LCV: ICE powertrains dominate the TCO ranking. H2-ICE will be 
competitive to Diesel beyond 2030. 

HD: Usage phase with high mileage dominates the life cycle. This leads to 
an advantage of the BEV´s charged with 100 % renewable energy. So the 
battery CO2-backpack of the BEV pays off at the end of life. 

TCO, 400TKm, 4 years [€ct/km] TCO, 600TKm, 5 years [€ct/km]

* from: Hydrogen Powertrains in Competition to Fossil Fuel based Internal Combustion Engines and Battery Electric Powertrains; Vienna 2021, Sens et.al.
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o H2 ICEs are important ecological and economical 
alternatives to other Zero-CO2 propulsion 
concepts.

o On long term H2 FCEV may be in advantage over 
H2 ICE, however H2 ICE is important as short and 
midterm solution in LCV and HDV applications.

o Among all competing technologies, the (H2) ICE 
comes with the highest TRL  and is based on a 
mature concept.  
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Combustion speed

Mixture Preparation

Auto-Ignition

• Specifically LPDI mixture preparation is challenging
due to spray contraction and short time interval, 
eventually leading to inhomogeneities. 
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• Sufficient mixture preparation is the most crucial issue with H2-ICE
• Beneficial diffusion behaviour of H2 compared to other fuels playing only a

minor role due to the relevant time scales.
• Deviations from good homogeneity comes with issues in combustion- and

emissions performance.

• Faster H2 combustion leads to increased pcyl and Tcyl compared to gasoline

• Ultimately, high p and T lead to drastically reduced ignition delay auto-ignition

• Dilution (air / EGR) mitigates this issue and enable operation at higher spec power

• Poor homogeneity and rich spots need to be avoided (PI, Knock, Backfire)

• H2 features fast combustion even in diluted / lean conditions
• While this fast combustion is beneficial for efficiency and combustion stability, it

also creates a high temperature in the flame area
• Minimum global lambda in the map shall be around ~2 with only small local

deviations (σ(λ) < 0.1) in order to avoid severe NOx creation
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• PFI System with benefits concerning mixture preparation but drawbacks in performance compared to LPDI due to lower 
volumetric efficiency

• Two stage-turbocharged 
• High charge dilution potential 

(λ>2.1)
– Caloric benefit 

(GIE>46%,BTE>43%)
– Very low NOx emission level 
– Knock mitigation 

• Cooled EGR (5… 15%)  at rated 
power area with further benefits:

• Lower boost request (PMEP 
reduction)

• NOx reduction at “richer” charge
• Strong knock mitigation 
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H2-ICE Development
Application Example of a PFI hydrogen engine
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• LPDI: Later SOI increases volumetric efficiency 
when SOI gets closer to IVC and remains constant 
after IVC  reduced displacement effect of H2

• Higher injection rate increases time for mixture 
preparation

• PFI system has generally much more time and 
volume (flow distance from injector into cyl.) for a 
homogenous mixture preparation compared with 
LPDI

• High injection rate “also” for PFI system meaningful 
in order place entire mass during open valve phase:

• Ideal PFI injection time with SOI shortly after IVO; 
EOI well before IVC in order to avoid ignitable air-H2 
mixture in intake port  backfire risk!

Increased time for 
mixture preparation

H2-ICE Development
Injection System Comparison PFI vs. LPDI
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H2-ICE Development
LPDI Spray Formation
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Comparison of air entrainment into the spray cloud: outward opening nozzle vs. multi hole nozzles

• At 40 mm (resp. 20 mm) distance the 
average lambda values are same for base 
injector and 2-hole (4-hole) cap sprays!

• Beyond that distances multi hole nozzles 
provide improved mixing quality in terms of 
air entrainment (lambda value) at spray front!

• Thus, multi hole caps provide 

− an improved spatial gas distribution 
within the combustion chamber,

− best performance in terms of nozzle 
positioning at the cylinder head,

− best choice for big engines (> 60 
mm free penetration length at EOI).

Lambda at same 
time after SOF

• A-Nozzle provides only poor penetration / air entrainment  Multihole caps needed for spray forming
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swirl = 0, no cap 0 mm

swirl = 0, 5-hole cap

swirl = 0, no cap +1.6 mm swirl = 0, 4-hole cap

swirl = 0, 11-hole cap swirl = 5, 5-hole cap

H2-ICE Development
LPDI Mixture Preparation / Injector cap variation

1600rpm / FL
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• The standard deviation of lambda is a 
homogeneity indicator. The lower 
the value the better the mixture. 
Desired values here are below 0.1.

• Injector position +1.6 mm into the 
cylinder leads to a worse 
homogeneity.

• The 4-hole cap is showing the lowest 
standard deviation, i.e. the most 
homogenic mixture.

• The effect of the swirl is shown with 
the 5-hole cap, where increasing the 
swirl results in a significant 
homogeneity increase.

• Careful development of injector position and cap design needed to deliver good homogenization. Still, proper charge motion is
greatest lever to improve homogeneity

H2-ICE Development
LPDI Mixture Preparation / Injector cap variation

1600rpm / FL
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Evaluation of different EAT layouts for HD engine 

• Holistic investigation of 3 different EAT layouts via coupled simulation 
(Engine & EAT models)

• Optimization of transient engine control to allow fast engine load build-
up with low NOx EO emissions:

• throttle valve

• boost pressure control (waste gate / VTG)

• mixture enrichment

• spark shift

• EGR control

• Optimization of DEF dosing strategy to enable high NOx conversion 
with low NH3 slip

 The considered emissions of all EAT configurations are below the proposed EUVII limits (100 and 90 Percentile).

 Low engine out NOx emissions enable overall low tailpipe NOx emission

 NOx and N2O emission can be lowered significantly with the SCR-only layout due to lowered NO2 generation

Fulfills proposed  EUVII legislation
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H2-ICE Development
EAT layout investigations
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NOx conformity for future ultra-low NOx Hyd. 
engines

• Significant reduction in NOx limits for future 
standards
(CARB MY27, EPA planned standard, EURO VII)

• H2 NOx conformity demonstrated on CARB Low 
Load Cycle (LLC)
• Engine-out NOx emissions < 2.0 g/kWh
 zero-emission aspect

• Very low tailpipe NOx emissions (~ 0.012 
g/kWh)

• SCR-only EAT used 
(No additional EAT heating required – no EHC)
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 The future ultra-low NOx regulation can be reached with 
advanced system development

H2-ICE Development
NOx conformity of H2 ICE propulsion system
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Component Level Subsystem Level System Level

Vi
rt

ua
l

Initial 0D / 1D / 3D CFD

IAV H2 Knock Prediction

IAV H2 Laminar Flame 
Speed Model

Adapted Emission 
Models (NOx, H2,…)

High fidelity 3D CFD
Driving design iterations for
combustion improvement

1D Simulation

Ex
pe

rim
en

ta
l Optical H2 Spray 

Characterization
Single Cylinder Engine 2 H2 Engine Dynos

660 kW / pH2 ≤ 100 bar 
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Validation/
C
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Rapid Prototyping by means of 3D print,
e.g. pistons and cylinder heads

• In all development
levels, IAV aims at
employing own
phenomenological
models that enable
predictive simulation of
system behavior, e.g.

Ignition
Knock
Flame speed / burn 
rate
Engine–out emissions
Tailpipe emissions

• Validation of 
assumptions and 
simulation results on all 
levels (specific 
component testing or 
in-situ experiments) is 
part of IAV´s 
development process
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H2-ICE Development
IAV´s unique H2-ICE development methodology
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LP DI H2 or PFI ICE Concept
• Premixed SI w/ Swirl Charge Motion
• pH2 ≤ 30 bar (DI) / ≤ 12 bar (PFI) 
• CR = 12
• 2-Stage Boosting w/ VNT for 

performance variant
• Map Wide λ > 2 Operation
• Optimized Mixture Preparation

Evolved LP DI H2 ICE Concept
• Increased CR > 14
• Improved TC Efficiencies
• Red. Pressure Losses
• CAC Optimization
• PCC
• Increased Full Load λ
• EGR
• Miller
• H2O Injection
• Friction Reduction

Next Generation H2 ICE
• Diffusive HP DI w/ ESI
• pH2 ≤ 200 bar
• CR16-17
• Reduced Wall 

Heat Losses
− Chamber Insulation
− PCC + Waste Heat 

Recovery
− (Opposed Piston)

42.2%

45.3%

> 55%
λ

 1st SOPs for LP DI H2 
ICE expected in 2025

 Future development focus 
on diffusive combustion

 Potential for BTE >50% in 
due to fuel properties
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• 30 % CO2 reduction cannot be achieved with a „Diesel-only“ strategy

• There is a need for zero CO2 alternative propulsions, which are 
available shortterm

• Hydrogen mobility (FC and ICE), e-fuels, electrifications

• HD Hydrogen system development from concept to series can be 
supported by IAV

• Retrofit, especially for large-bore engine

 Promising results in development of new commercial engines
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Thank you for your attention!
Marc Sens
Senior Vice President Research & Technology I Sustainability Engineering
Mobile: 0162 244 61 84
marc.sens@iav.de

Many thanks to all colleagues who have contributed to this presentation. 
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